17 research outputs found

    An analytical framework for the performance evaluation of proximity-aware structured overlays

    Get PDF
    In this paper, we present an analytical study of proximity-aware structured peer-to-peer networks under churn. We use a master-equation-based approach, which is used traditionally in non-equilibrium statistical mechanics to describe steady-state or transient phenomena. In earlier work we have demonstrated that this methodology is in fact also well suited to describing structured overlay networks under churn, by showing how we can accurately predict the average number of hops taken by a lookup, for any value of churn, for the Chord system. In this paper, we extend the analysis so as to also be able to predict lookup latency, given an average latency for the links in the network. Our results show that there exists a region in the parameter space of the model, depending on churn, the number of nodes, the maintenance rates and the delays in the network, when the network cannot function as a small world graph anymore, due to the farthest connections of a node always being wrong or dead. We also demonstrate how it is possible to analyse proximity neighbour selection or proximity route selection within this formalism

    Clustering of solutions in hard satisfiability problems

    Full text link
    We study the structure of the solution space and behavior of local search methods on random 3-SAT problems close to the SAT/UNSAT transition. Using the overlap measure of similarity between different solutions found on the same problem instance we show that the solution space is shrinking as a function of alpha. We consider chains of satisfiability problems, where clauses are added sequentially. In each such chain, the overlap distribution is first smooth, and then develops a tiered structure, indicating that the solutions are found in well separated clusters. On chains of not too large instances, all solutions are eventually observed to be in only one small cluster before vanishing. This condensation transition point is estimated to be alpha_c = 4.26. The transition approximately obeys finite-size scaling with an apparent critical exponent of about 1.7. We compare the solutions found by a local heuristic, ASAT, and the Survey Propagation algorithm up to alpha_c.Comment: 8 pages, 9 figure

    Behavior of heuristics and state space structure near SAT/UNSAT transition

    Full text link
    We study the behavior of ASAT, a heuristic for solving satisfiability problems by stochastic local search near the SAT/UNSAT transition. The heuristic is focused, i.e. only variables in unsatisfied clauses are updated in each step, and is significantly simpler, while similar to, walksat or Focused Metropolis Search. We show that ASAT solves instances as large as one million variables in linear time, on average, up to 4.21 clauses per variable for random 3SAT. For K higher than 3, ASAT appears to solve instances at the ``FRSB threshold'' in linear time, up to K=7.Comment: 12 pages, 6 figures, longer version available as MSc thesis of first author at http://biophys.physics.kth.se/docs/ardelius_thesis.pd

    Exhaustive enumeration unveils clustering and freezing in random 3-SAT

    Full text link
    We study geometrical properties of the complete set of solutions of the random 3-satisfiability problem. We show that even for moderate system sizes the number of clusters corresponds surprisingly well with the theoretic asymptotic prediction. We locate the freezing transition in the space of solutions which has been conjectured to be relevant in explaining the onset of computational hardness in random constraint satisfaction problems.Comment: 4 pages, 3 figure

    On state space structure and average case complexity in random K-SAT problems

    No full text
    This thesis gives an introduction to a currently active area in the cross-section between theoretical computer science and theoretical physics. In the last ten years it has been suggested that critical behaviour, usually seen in models from condensed matter physics, may be responsible for the intractability of NP complete computation problems. This would suggest a very deep connection between the two fields on the most fundamental level. How deep this connection really is is subject to ongoing research as well as the topic of this thesis. Some of the conjectrues from the physics community regarding computational hardness in certain problem classes has turned out to be wrong or misinterpreted but the gained interest in both fields has promising potiential in moving the research frontier forward. The material presented in this thesis is the result of nearly two years work in trying to clearify how the results from physics can be interpreted in the language of actuall computation problems.Denna avhandling ger en introduktion till ett mycket aktivt forskningsomrÄde i grÀnslandet mellan teortisk datalogi och teoretisk fysik. Under de senaste tio Ären har det framkommit forskningsresultat som pekar pÄ att kritiska fenomen, vanligen hemmahörande i modeller frÄn teoretisk materialfysik, kan vara nyckeln till att förstÄ varför NP fullstÀndiga problem Àr sÄ svÄra att lösa. Detta skulle innebÀra en mycket djup och fundamental koppling mellan de bÀgge omrÄdena. Hur djup denna koppling verkligen Àr Àr temat i mycket av pÄgÄende forskning sÄvÀl som Àmnet för denna avhandling. Vissa förutsÀgelser frÄn den teoretiska fysiken har visat sig felaktiga eller feltolkade men det ökade intresset för dylika frÄgor inom bÀgge forskningomrÄden ger hopp om att tillsammans kunna flytta from forskningsfronten.QC 2010110

    On the Performance Analysis of Large Scale, Dynamic, Distributed and Parallel Systems.

    No full text
    Evaluating the performance of large distributed applications is an important and non-trivial task. With the onset of Internet wide applications there is an increasing need to quantify reliability, dependability and performance of these systems, both as a guide in system design as well as a means to understand the fundamental properties of large-scale distributed systems. Previous research has mainly focused on either formalised models where system properties can be deduced and verified using rigorous mathematics or on measurements and experiments on deployed applications. Our aim in this thesis is to study models on an abstraction level lying between the two ends of this spectrum. We adopt a model of distributed systems inspired by methods used in the study of large scale system of particles in physics and model the application nodes as a set of interacting particles each with an internal state whose actions are specified by the application program. We apply our modeling and performance evaluation methodology to four different distributed and parallel systems. The first system is the distributed hash table (DHT) Chord running in a dynamic environment.  We study the system under two scenarios. First we study how performance (in terms of lookup latency) is affectedon a network with finite communication latency. We show that an average delay in conjunction with other parameters describing changes in the network (such as timescales for network repair and join and leave processes)induces fundamentally different system performance. We also verify our analytical predictions via simulations.In the second scenario we introduce network address translators (NATs) to the network model. This makes the overlay topology non-transitive and we explore the implications of this fact to various performance metrics such as lookup latency, consistency and load balance. The latter analysis is mainly simulation based.Even though these two studies focus on a specific DHT, many of our results can easily be translated to other similar ring-based DHTs with long-range links, and the same methodology can be applied evento DHT's based on other geometries.The second type of system studied is an unstructured gossip protocol running a distributed version of the famous Belman-Ford algorithm. The algorithm, called GAP, generates a spanning tree over the participating nodes and the question we set out to study is how reliable this structure is(in terms of generating accurate aggregate values at the root)  in the presence of node churn. All our analytical results are also verified  using simulations.The third system studied is a content distribution network (CDN) of interconnected caches in an aggregation access network. In this model, content which sits at the leaves of the cache hierarchy tree, is requested by end users. Requests can then either be served by the first cache level or sent further up the tree. We study the performance of the whole system under two cache eviction policies namely LRU and LFU. We compare our analytical results with traces from related caching systems.The last system is a work stealing heuristic for task distribution in the TileraPro64 chip. This system has access to a shared memory and is therefore classified as a parallel system. We create a model for the dynamic generation of tasks as well as how they are executed and distributed among the participating nodes. We study how the heuristic scales when the number of nodes exceeds the number of processors on the chip as well as how different work stealing policies compare with each other. The work on this model is mainly simulation-based.Att utvĂ€rdera prestanda hos storskaliga distribuerade system Ă€r en viktigoch icke-trivial uppgift. I och med utvecklingen av Internet och det faktum attapplikationer och system har fĂ„tt global utstrĂ€ckning, har det uppkommit ettökande behov av kvantifiering av tillförlitlighet och prestanda hos dessa system.BĂ„de som underlag för systemdesign men ocksĂ„ för att skapa förstĂ„elseoch kunskap om fundamentala egenskaper hos distribuerade system.Tidigare forskning har i mĂ„ngt och mycket fokuserat antingen pĂ„ formaliserademodeller, dĂ€r egenskaper kan hĂ€rledas med hjĂ€lp av strikta matematiskametoder eller pĂ„ mĂ€tningar av riktiga system. MĂ„let med arbetet i dennaavhandling Ă€r att undersöka modeller pĂ„ en abstraktionsnivĂ„ mellan dessa tvĂ„ytterligheter. Vi tillĂ€mpar en modell av distributerade system med inspirationfrĂ„n sĂ„ kallade partikelmodeller frĂ„n den teoretiska fysiken och modellererarapplikationsnoder som en samling interagerande pariklar var och en med sitteget interna tillstĂ„nd vars beteende beskrivs av det exekvernade programmeti frĂ„ga. Vi tillĂ€mpar denna modelerings- och utvĂ€rderingsmetod pĂ„ fyra olikadistribuerade och parallella system.Det första systemet Ă€r den distribuerade hash tabellen (DHT) Chord i endynamisk miljö. Vi har valt att studera systemet under tvĂ„ scenarion. FörstutvĂ€rderar vi hur systemet beteer sig (med avseende pĂ„ lookup latency) iett nĂ€tverk med finita kommunikationsfördröjningar. VĂ„rt arbete visar atten generell fördröjning i nĂ€tet tillsammans med andra parametrar (som t.ex.tidsskala för felkorrektion och anslutningsprocess för noder) genererar fundamentaltskilda prestandamĂ„tt. Vi verifierar vĂ„r analytiska model med simuleringar.I det andra scenariot undersöker vi betydelsen av NATs (networkadress translators) i nĂ€tverksmodellen. Förekomsten av dessa tar bort dentransitiva egenskapen hos nĂ€tverkstopologin och vi undersöker hur detta pĂ„verkarlookup-kostnad, datakonsistens och lastbalans. Denna analys Ă€r frĂ€mst simuleringsbaserad.Även om dessa tvĂ„ studier fokuserar pĂ„ en specifik DHT sĂ„kan de flesta resultat och metoden som sĂ„dan överföras pĂ„ andra liknanderingbaserade DHTer med lĂ„nga lĂ€nkar och Ă€ven andra geometrier.Den andra klassen av system som analyseras Ă€r ostrukturerade gossip protokolli form av den vĂ€lkĂ€nda Belman-Ford algoritmen. Algoritmen, GAP,skapar ett spĂ€nnande trĂ€d över systemets noder. ProblemstĂ€llningen vi studerarĂ€r hur tillförlitlig denna struktur, med avseende pĂ„ precisionen pĂ„ aggregatvid rotnoden, Ă€r i ett dynamiskt nĂ€tverk. Samtliga analytiska resultatverifieras i simulator.Det tredje systemet vi undersöker Ă€r ett CDN (content distribution system)med en hierarkisk cache struktur i sitt distributionsnĂ€t. I den hĂ€r modellenefterfrĂ„gas data frĂ„n löven pĂ„ cache-trĂ€det. Antingen kan förfrĂ„gan servas avcacharna pĂ„ de lĂ€gre nivĂ„erna eller sĂ„ skickas förfrĂ„gan vidare uppĂ„t i trĂ€det.Vi analyserar tvĂ„ fundamentala heuristiker, LRU och LFU. Vi jĂ€mför vĂ„raanalytiska resultat med tracedata frĂ„n riktiga cachesystem.Till sist analyserar vi en heuristik för last distribution i TileraPro64 arkitekturen.Systemet har ett centralt delat minne och Ă€r dĂ€rför att betrakta somparallellt. Vi skapar hĂ€r en model för den dynamiska genereringen av lastsamt hur denna distribueras till de olika noderna pĂ„ chipet. Vi studerar hur heuristiken skalar nĂ€r antalet noder överstiger antalet pĂ„ chipet (64) samtjĂ€mför prestanda hos olika heuristiker. Analysen Ă€r simuleringsbaserad.QC 20131128</p

    On state space structure and average case complexity in random K-SAT problems

    Get PDF
    This thesis gives an introduction to a currently active area in the cross-section between theoretical computer science and theoretical physics. In the last ten years it has been suggested that critical behaviour, usually seen in models from condensed matter physics, may be responsible for the intractability of NP complete computation problems. This would suggest a very deep connection between the two fields on the most fundamental level. How deep this connection really is is subject to ongoing research as well as the topic of this thesis. Some of the conjectrues from the physics community regarding computational hardness in certain problem classes has turned out to be wrong or misinterpreted but the gained interest in both fields has promising potiential in moving the research frontier forward. The material presented in this thesis is the result of nearly two years work in trying to clearify how the results from physics can be interpreted in the language of actuall computation problems.Denna avhandling ger en introduktion till ett mycket aktivt forskningsomrÄde i grÀnslandet mellan teortisk datalogi och teoretisk fysik. Under de senaste tio Ären har det framkommit forskningsresultat som pekar pÄ att kritiska fenomen, vanligen hemmahörande i modeller frÄn teoretisk materialfysik, kan vara nyckeln till att förstÄ varför NP fullstÀndiga problem Àr sÄ svÄra att lösa. Detta skulle innebÀra en mycket djup och fundamental koppling mellan de bÀgge omrÄdena. Hur djup denna koppling verkligen Àr Àr temat i mycket av pÄgÄende forskning sÄvÀl som Àmnet för denna avhandling. Vissa förutsÀgelser frÄn den teoretiska fysiken har visat sig felaktiga eller feltolkade men det ökade intresset för dylika frÄgor inom bÀgge forskningomrÄden ger hopp om att tillsammans kunna flytta from forskningsfronten.QC 2010110
    corecore